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ABSTRACT 

A 48-hr. forecast for the  entire  Korthern  Hemisphere of a barotropic  hydrostatic  atmosphere is made  with  the 
"primitive  equations."  Overlapping  Mercator  and  stereographic  grids  are  used,  together  with  the finite-difference 
scheme  proposed  by  Eliassen.  Initial  data  corresponded  to  a  Haurwitz-type  pattern of wave  number 4. The 
initial wind field was  nondivergent  and  the  initial  geopotential field satisfied  the  balance  equation.  The  compu- 
tations  seem  to  be  stable  and well behaved,  except for two  small  temporary  irregularities.  The  amplitude of the 
gravity-inertia  waves  present  in  the  forecast  geopotential field is about 1/30 that  of the large-scale field. It can  be 
shown  that  this is due  to  the  neglect,  in  the  initial  data, of the  quasi-geostrophically  conditioned  divergence field. 
The  computational  technique itself therefore does not give any  unreal  prominence to   the  "meteorological noise." 
The  computational  charact,eristics and stability  criterion of the  Eliassen finite-difference system  are  investigated  for 
a linearized  version of the  equations. 

1. INTRODUCTION 

The so-called "primitive  equations"  have  not bcen used 
much in  numerical  forecasting because of two main  diE- 
culties. First, if the  initial wind and pressure fields are 
not known accurately, art'ificially  large gravit'y waves will 
appear  in the forecast [3,8]. Secondly,  t'he  computa- 
tional stabilit'y crit'erion  for  these equations  requires a 
time step of at  most' 10 minutes  compared t'o the 40- to 
60-minute time  step allowed in the geost'ropbic system. 
The development' of larger  and  faster  computing  machines 
is rapidly  eliminating  the second difficulty. I t  also seems 
probable that' a gradual  improvement of the  rawin  and 
radiosonde net'work,  combined  with  special ana1.vse.s  of 
the initial data, may go far  toward  solving  t'he first, diffi- 
culty.  A stable  and  accurat,e  computation scheme is t'hcn 
all that will be  required  to  take  advantage of the  more 
faithful  reproduction of atmospheric processes which is 
possible wit'h tjhe  primitive  equat'ions. (The geostrophic 
system not, only fails at'  short'  wavelengths [2], but also 
loses its special  prognostic  value at'  extremely  long  wave- 
lengths [I]. In a,ddition,  certain  import'ant effect's such 
as the  horizontal variat'iorl of stat'ic stabi1it.v cannot, be 
incorporat'ed into  the geost'rophic  system [ I O , ]  I].) 

There  are t'wo aspects  to  the design of a good compu- 
tation  scheme for the  primitive  equations: (a) t'he finit'e 
difference equivalents of the  partial differential equations 
themselves, and (b)  the  formulation of lateral boundar~- 
conditions.  Eliassen (61 and  Platzmann [I51 have dis- 
cussed the  former  and  have  arrived  at, a finite-difference 
scheme for the primit'ive  equat,ions which is more efficient' 
t'han the  type of finite-differences currently used in geo- 

strophic  forecasts.  However,  boundary conditions for the 
solut'ion of the  primitive  equations  by finite-differences 
also require  considerable  care in  their  formulation, as has 
been pointed out, for example, b ~ -  Smagorinsky [17]. This 
problem is greatly simplified if the  lateral  boundary of the 
forecast region can  be  placed on the  equator, where suit- 
able symmetry  assumptions C R I ~  be  imposed on the fore- 
cast'  variables.  Although the  equator  as a boundary is 
readilJ- fitted  int80  either a spherical  coordinate  system or 
into  coordinates on a Mercat'or map,  both of these co- 
ordinate  systems  have singu1arit)ies at   the  Sorth Pole. 

In an attempt  to avoid this  problem,  the writer has 
suggested the  simultaneous use of a Mercator  map in low 
latitudes  and a stereographic  projection in high latitudes 
[19]. However, the  computational  stability of this sys- 
tem is then  too complicat,ed a question  to  be examined by 
mathematical  analysis. A numerical  test of the scheme 
has  therefore  been  made  and t'he  results  are described in 
this  paper.  The  equations used were those  appropriate 
to a homogeneous  incompressible  atmosphere moving 
h.vdrost'atically. The initial  wind  and pressure (geo- 
potential) fields were defined mathematically,  rather  than 
being obtained  from a weather  map.  The  computations 
are  therefore  a  test  only of this  method of computation, 
and  do  not  purport  to  answer t'he  question of whether 
adequat'e initial data can be defined for real forecasts. 

2. THE EQUATIONS OF MOTION 

The horizontal  equations of motion  in  spherical coordi- 
nates,  assuming  hydrostatic  balance  and neglecting 
friction, can be  written 
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aX COS 8 = 2 ~ e ( ~ +  n) sin e-- - u COS e zn 
. .  1 b4, 

aO=--aX cos O(X+2n) sin O--"-. 1 b4 
a be ( 2 )  

Here  X=longitude,  O=latitude, a=radius of the  earth, 
Q=angular  velocity of the  earth,  and  +=the geopotential 
of an isobaric  surface. The  dot ( ' )  is the  substantial 
derivative : 

I ere p is the  pressure,  and  it is clear that  the  independent 
variables  which are being  used are X, e, p ,  and t. Equa- 
tions (1) and ( 2 )  do  not contain the Coriolis term 2fki cos 0 
or  the  inertia term.s 2xa cos e and Z a i .  They  must be 
neglected for  consistency when the  hydrostatic appr0xim.a- 
tion is used,  since their  counterparts in the third  equation 
of motion have also been neglected. 

Applying  these equations  to  the m.otion of an incompress- 
ible homogeneous atmosphere  with a free  [surface we find 
that (1) and (2) carry  over as written, if 6 is set equal  to 
gz, where z is the  variable  depth of the  atmosphere. 
(3) becomes simpler by  the  disappearance of the b/bp 
operator,  since x and e may be  taken  as  independent of the 
vertical  coordinate p .  The only  other  equation needed is 
the  continuity  equation, which  for this  atmosphere can be 
written 

(Here g, the acceleration of gravity,  has been assumed 
constant,  and  variations in a have also been neglected.) 

We now define the  map coordinates  for  the  Mercator 
and  stereographic  projections as follows: 

Mercator: 
X=aX, 

Y= -u  In h, 

Stereographic : 
a=2ah cos X, 

y=2ah sin X, 

h=cos 8(1+sin e)-l. (7) 

(6) 

Following the  procedure  outlined  in [13], we define 

U=ax cos e=M-lX, 

V=ae=M-'Y, 

M=sec e, 

so that U and V are the  horizontal  velocity  components 
along the X -  and Y-axes of the  Mercator  projection. M 
is the scale factor  for  this  projection. 

For the  stereographic  projection we define 

u=-aX cos e sin x-ae cos X=m"k, 

v=aX cos e cos X- ad sin X=m-ly, (9) 

m=2(1+sin e)-l, 

so that u and v are  the  horizontal  velocity components 
along t.he x- and y-axes of the stereographic  projection. 
m is the scale factor  for  this  projection. (77, V )  and (u, v) 
are  related  by the expressions: 

u=  - U sin X- V cos X, 

v =  U cos X- V sin X. 
(10) 

Thc two  horizontal  equations of motion and  the con- 
tinuity  equation (4) can now be written in the  map co- 
ordinates: 

bU 
bt 
" 

bt 

+=-m[g+u-+u- dt  bu bx dul d?J + v  2Qs ine -  (xv-yu~l 2a2 

?=-m[$+u-- bt +v- --u 2nsin 8- 
bv bx by [ (xv- 2a2 yu) l  

The  Mercator  equations (11)-(13) are  equivalent  to the 
stereographic  equations (14)-(16) and also to  the spherical 
equations  (1)-(4). 

Equations (11)-(13) have a singularity at the pole 
where M=se,c e becomes infinite. Equations (14)-(16) 
have a singularity at   the south pole,  where m=2 ( 1  + 
sin e)-l becomes infinite. As described in [13], the finite- 
difference solution of (1 1)-(16) is to be cmried out over 
one  hemisphere by  applying (1 1)-(13) on a Mercator grid 
in low latitudes  and (14)-(16) on a stereographic  grid in 
high  latitudes.  The  Mercator grid  should  extend  from 
the  equator  to  about 43O latitude,  with  the  stereographic 
grid  being  responsible for  the  area poleward of this  lati- 
tude (see fig. 1). The singularities are  thereby  avoided 
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3. FINITE-DIFFERENCE  EQUATIONS 

To solve (1  1)-(16) we use the finite-difference scheme 
proposed by Eliassen [6j for  the  primitive  equations. To 
describe this scheme in the  present  context we must define 
four lattices on the  Mercator  map  and.four  on  the  stereo- 
graphic.  First we introduce  the  constant  space  incrcment 
A to be used on both  maps: 

A=- 27ra 
I" , (P=integer). 

(It will  be convenient to take 1 as a11 even integer.) T h c  
Mercator  grid is t'herefore  rectangular (P+2) x ( Q + 2 )  and 
the  stereographic  grid is square (1+2) x (1+2) .  The 
num.bers (po,  q o )  and (io, j o )  determine  the  location on t'he 
map of the origin of each  grid.  We define the  four 
Mercator  and  the  four  stereographic grids  (denoted by 
A,  B, C, and D) by  the  four  sets of values of (po ,  qo) and 
(io, j,) shown  in table 1. Figurc 2 shows the  relative 
orientation on the  map of the  points on the four  grids 
which have  the  same  subscripts ( p ,  q )  or ( i , j ) .  From  the 
definition of X in (5) and A in (1 7), i t  can be seen that  the 
points p=o and p =  1 on the  Mercator grid arc  idcntical 
w-ith the  points p =  P and p =  P+ 1 ,  respectively. These 
extra points  are included in the grids  mcrely  for con- 
venience in  solving the  equations. 

The Eliassen computation scheme is obtained by de- 
fining thc  variables (U ,  V, +) or (u, n, +) on  the  grids as 
follows. At time t = A t ,  2At,  3At, . . ., nAt, U (or u) is 
represented at   the lattice  points of grid U ;  V (or u )  is 
represented at   the lattice  points of grid P ;  and + (or +) is 
represented at   the lattice  points of grid A .  At  thc 
intermediate  times, t=l/2At,  3/2At,  5/2At, . . ., (n+1/2)At, 
U (or u) is represented on grid C, V (or u) on grid B, 
and + (or +) on  grid D. Such an  arrangement is much 
more efficient than when all quantities (e.g. U ,  V ,  and 6) 

TABLE 1.-Origin coordinates of the four  grids used in the  Eliassen 
Jinite-diflerence  scheme. 

Grid 

525468-59-3 

are defined at each point of a  single  grid a t  all time  steps. 
(Note  the discussion of fig. 5 in  section 7.) For con- 
venience  in notation we will hereafter use a prime  super- 
script (U',  V', +', u', v', +') to  indicate  the  quantities 
defined at the  intermediate  times t= l/2At, . . ., (n+1/2)At. 
For example, +,qn will indicate +[X=(p-l/2)A, 
Y=(q-l/2)A,  t=nAt] (st,ored  on  grid A, where po=1/2 
and qo= 1/2). +',,%, however, will indicate +[X=pA,  
Y= (a- 1)A: t= (n+1/2)At] (stored on grid D, where 

p o = O  and qo=l.)  
For convenience  in  writing the finite-difference equiva- 

lents of (11)-(16) we also introduce  the  notation 6, and 
up for  the following operators: 

~,S,,=S,,"s,-1 9 )  

~ , S , , = ~ ~ S , p + S p - l  ,). 

Similar  definitions  hold  for 6,, u,, l i t ,  6j, ui, and uj. Finally, 
to eliminate  unnecessary  repetition of letter  subscripts in 
the  formulae, a quantity  such as S,, will be  written simply 
as Soo, S, q+l  as Sol, etc. 

In the Eliassen  scheme, the six equations (1  1)-(16) 
applied  to  the  Mercator  and  stereographic projections, 
result in 12 finite-difference  equations.  Quantities  ap- 
pearing on the  right side of these  equatiotls  are  understood 
to  have  the  time  subscript n in all cases. The symbol f 
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Y (y)  

t 
112 A 

.1 

B D 

FIGURE 2.-Relative positions on a Mercator (or stereographic)  map 
of the  points on the four grids A ,  B, C, and D which  have  the same {8i'#'l~+~j[(~iU11)(~iU11)I+Z)008j~iU11}+v00At 
finite-difference coordinates p ,  p (or i ,  j ) .  

A 
fooc-= [ ( i - - o b o o -  ( j - j o ) ~ i ~ j ~ l I l  

is used for the Coriolis parameter 2Q sin e. j arid the scale 
factors M and m are identified by  additional  subscripts v;on-v& n - l =  -rnOOB 
A, B, C, or D denot'ing  the  grid on which they  are  locatcd. 

~ ~ j ' # ' o o + * " o ~ i ~ j 1 1 ' O o + ' T i ~ ~ ~ ~ u o o ~ ~ 6 j Z ) o o ~ l }  "OOAt 
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The first six of th.esc refer to  the IIercator grid,  the second 
six to the stereographic.  grid. [The nunl.bers io and j o  have 
tbc value ( I / 2 + 1 / 4 )  in equat io~~s ( 2 5 )  and (29), and  the 
value (1/2+3/4) in  equations (26 )  and (28) . ]  

The order of solving  t'he  c~quations is (19)-(21) and 

the form of the  equations it is clear that  they can all be 
solved on  the interior points of the grids (p= 1 ,2 ,  3 ,  . . . , 

I ) .  A iurt'ber inspection will  &ow that  the  left ( i = O  or 
p=O) and  top (j=I+I or y = Q + l )  boundaries  all be 
cor~~putcd with  equations (21) and ( 2 7 ) ;  the  left  and bot,- 
tom (.j=O or q=O) boundaries C R I ~  be computed in (19), 
( 2 3 ) ,  (25), and  (29);  the  bott'om  and  right (i=I+l or  
p=P+ 1) boundaries in (24) and (30) ; and right  and  top 
boundaries can be computed in (20), ( 2 2 ) ,  ( 2 6 ) ,  and (28). 
The  remaining  boundary  values (in general,  two  adjacent 
boundaries for each grid of data) n>.ust' be computed by 
other  means  than (19)-(30) in order  to  regenerate  t'hc 
complete  grids of data  at each  time step. The proccdure 
that was used here is described in the  next'  section. 

The sp t ,em (19)-(30), although  written in a form sug- 
gestive of uncent,ered differences, actuallv uses ce1ltcrc.d 
differences. (The  truncation  crror can be expressed as  a 
series in Az and (At)'.) A special starting  procedure  must 
be used to get the prirned variables a t  t,ime t= I /2At. In 
the tmest com.putat,ion  described in this paper, an uncen- 
t,ered step was used to get  the  initial  values of C ' ,  V' ,  ct'c. 
at  n=O(t=1/2At) .  U',  V' ,  etc. were initially  known at 
t=O.  Their  value at  t=1/2At(n=O)  was obta,irled from 
(19)-(21) alld ( 2 5 ) - ( 2 7 )  by temporarily  replacing At by 
1/2At on the  right side of t'hosc equatiovs, a,tld the sccor~d 
tern1 on the  left side of thosc  cquntions by I , ; ' ( t=O),  ctc. 

( 2 5 ) - ( 2 7 ) ,  follom-cd bJ- (22)-(24) arid (28)-(30). Fro111 

P ;  q = l , 2 , .  . . ~ 0) a.nd ( i = 1 , 2 , 3 , .  . . , I ; j = I , Z , .  . . , 

4. BOUNDARY CONDITIONS 

We  examine  first the  equatorial  boundary  condition, 
which is used to  specify  the  variables  on  the  bottom row 
of the  Mercator grid ( 0 ~ 0 ) .  If the motion a t  one instant 
t=to over  the entire sphere  satisfies the  symmetry condi- 
tions 

( 3 3 )  

i(x,e, to) = i(x,- e, t o ) ,  

e(x, e, to) =-e(x,- e,  to), (3 1) 

+(x, 0, to) =+(x,--, to) ,  

equations (1 ) - (4 )  will preserve  this  symmetry  for  all 
future t .  It is clear that  under  these conditions  computa- 
tions  need  be  made  over  only  one hemisphere, and  the 
appropriate  boundary  conditions at   the equator  may be 
inferred  directly from (31). For  the  Mercator variables 
U, V, and (6, equation (31) may  then be  written 

a(x, Y,  t )  = U(X,  - Y, t ) ,  

V ( X ,  Y ,  t )  = - V ( X ,  - Y, t ) ,  (32)  

4 ( X ,  Y ,  t )  =(6(X,", t ) .  

As applied  to  the six hfercator grids of data, we find that 
this implies 

U ~ O  b7i1 (po= 1 /2 )  

vio = - v-;, (pa= I )  

(6:o =(6:2 (qo=  1) 

up, = UP' ( q o =  1) 

1' PO = - -rP, (qo=l/2) 

(6PO S ( 6 P l  (!lo= 1/21 

(It can be shown  from  equations (20) that ViL will always 
be  zero.) 

The left  and  right  boundaries of the  Mercator grid  are 
easily  handled by  applying  the cyclic boundary condition 
that, the, point (p=O, q = q )  is identical  to  the  point (p=P, 
q=p) and  the  point ( p = P + I ,  q=q)  is identzic,al with  the 
point @=I, q = q ) .  

On the  top  boundary (q=Q+l)  of the  Mercator grids, 
I-', 4', and 71 can be forecast by (ZO), ( 2 1 ) ,  and ( 2 2 ) .  
The variables C:', V, and 4 at p = Q + l  c,annot be forecast 
by (19), ( 2 3 ) ,  and  (24),  however. (Note that these latter 
quant'it'ies  are  stored on grids A and C, which have  the 
smaller  value of po in  table 1, and therefore the most 
northerly position of the four  Nerc,ator grids, as shown 
by fig. 2 . )  I n  addition,  boundary  values of the six stereo- 
graphic  variables u', v', +', u, v, and + must  be  obtained 
on the boundasies  listed in the  third column of table 2. 
(These are  the only  points on those  grids which cannot be 
forecast  from the firlitme difference equations (25)-(30) .) 
In [1:3] a method was  outlined  for  obtaining  these  boundary 
values by  interpolation  from  the  associated  grid.  For 
example, a Mercator  boundary  value of 4 is interpolated 
from the corresponding  stereographic  grid of 4 values, and 
vice  versa. In  the case of the velocity  components 
(C, V9 and (u, v) the relations (10) must of course be used 
to  supplement  the  interpolation process, as indicated in 
the  last  column of table 2 .  
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TABLE 2.-Interpolation of boundary  values  between  the  Mercator  and 
stereographic  grids 

Variable 1 Grid 
" I 
U' ................ 1 Mere. (C)  

4 ................ Merc. $4) V-. .............. Merc. ( C )  
u'...... .......... 
71' ................. 

Ster. (C)  
Ster. (B)  

4'"" ............ 
Ster. ( C )  u ................. 
Ster. (B) u ................. 
~ t e r .  ( D )  

+ ................. Ster. (A)  

Boundaries  needed  Interpolated  from grid- 

q=Q+l  -1 Ster: u' ( C )  and u' ( P )  

q=Q+l 

Mere: U' (C)  and 1" (B) i = O  and j = O  
Mere: U' ( C )  and 1" (B)  i=I+l  andj=1+1 
Ster: ZL (B) and u ( C )  n = Q + l  
Ster: 4 (-4) 

i=I+1  andj=O 

Mere: U ( B )  and V ( C )  i=I+l a n d j = l + l  
Mere: U ( B )  and 1' (C)  i = O  and j = O  
Mere: 4' (D)  

i = O  and j=I+l 1 Mere: 4 (A)  

In order  to  perform  the  boundary  interpolations in a 
"neat" manner it is necessary that  the  individual  Mercator 
and  stereographic  grids  overlap one another  to  a  certain 
extent. To  make  this  statement  more  precise,  let  us 
define the sub-boundary points of a  grid as those  points 
located next to a  boundary (i.e.  where q = Q  on  the 
Mercator  grids or the  points  with i= 1 or I ,  j=1 or I 
on the  stereographic  grids). We require  that  the 
points q = Q + l  on  Mercator  grids A and C (for which 
Y=(Q+ 1/2)A) lie north of the  most  northerly  sub- 
boundary  point of the  stereographic  grids.  This  latter 
point is located a t  a  distance  r=Jx2+y2=(A/4)[(21 
-3)2+ 1]1/2 from  the pole on  the  stereographic  projection. 
The  boundary  values of U', 4, and V required in table  2 
can then  be  obtained  by  interpolation  on  the  stereo- 
graphic  grids  without  reference  to  the  boundary  values 
on those grids.  Referring  to  (5), (6), and (7) we find 
that Y and r are  related  by  the  equation  exp(- Yja )  
=r/2a. We must  therefore  have 

e~p[-(2&+l)a/P]<(?r/4P)[(21-3)~+1]'/~. (34) 

Another constraint which  should  be  satisfied  is that  the 
northernmost  boundary  point  on  a  stereographic  grid 
(at r=(A/4)[(21+1)2+ 1]1/2) be  located south of the 
southernmost  sub-boundary  point  on  the  Mercator  grids 
(located a t  p=Q on  grids B and Dl with Y= ((3- 1)A). 
The, boundary  values of u', v', tp', u, v, and tp required in 
table  2  on  stereographic  boundaries  can  then be obtained 
by  interpolation  on  the  Mercator  grids  without  reference 
to  any  Mercator  boundary  points.  This  leads  to  a second 
inequality : 

If Q and I are  not  large  enough to satisfy  both (34) and 
(35), the  interpolation process becomes more  complicated 
and will undoubtedly  lead  to  mathematical  instabilities. 

The values of P, (3, and I used in this  test  computa.tion 
were 

P=80, Q=12, 1=22. 

This gives a grid increment  A=2aa/P of 500.4 km.  The 

corresponding  distances  on the  earth  varied  from 500.4 
km.  at  the pole (m=1)  and  equator  (M=l)  to a  minimum 
of about 350 km. (m-"1.4) in  middle  latitudes. I t  
should  be  pointed out  that  horizontal  space differences 
in the  system (19) - (30) are  taken  over  the  distance A, 
rather  than 2A as is customary a t  present  in numerical 
weather  prediction. 

It might be thought  that all boundary  values on the 
stereographic  grids,  including  those which  can  be forecast 
by- (19)-(24), could be obtained  by  interpolation. This 
procedure  was  in  fact  tried  in a preliminary  computation. 
(It is logically easier  from  the  point of view of the machine 
program  to  interpolate  all four boundaries  on  the stereo- 
graphic  grids  than it is to  do  only  those  listed in table 2.) 
However,  the  results of this  preliminary  computation were 
quite  unsatisfactory  compared  to  the  results described 
in this  paper.  When  interpolation was  done  on all 
boundaries,  the flow patterns  tended  to  move a t  different 
speeds  on the  two  grids,  and  discontinuities developed 
near  the  grid  boundaries. 

The  details of the  interpolation process were as de- 
scribed in [13]. Computation of one  interpolated  boundary 
value  took less machine  time  than  did  a  computation of 
one of the  equations (19)-(30) a t  one  pont.  Thus, only 
about 5 percent of the  total  computation  time  was spent 
on  the  boundary  computations. 

5. INITIAL DATA 

The  initial  velocity  and  geopotential fields for  this  test 
computat'ion were defined by a flow pattern of the  type 
h a t e d   b y  Haurwitz [7]. The  initial  velocity field v was 
non-divergent,  and  given  by  the  stream  function $: 

+=-a2w sin B+a2 K cos sin e cos RA. (36) 

w, K,  I I ,  and a (radius of the  earth)  are  constants. As 
shown by  Haurwitz,  a flow pattern  like  this will, in a 
non-divergent barotropic  atmosphere,  move  from  west to 
east  without  change of shape  with  the  angular  velocity v: 

R(3+R)w"2n 
'= (1+R)(2+R) ' (37) 

The  equations used in  t'he  computations,  however,  are 
not  those for a non-divergent  atmosphere, but  for one 
with a free surface.  (37) will therefore  only  be satisfied 
approximately.  The presence of divergence in the  baro- 
tropic  atmosphere, will, as is well known,  slow  up the  rate 
of progression of the flow pattern, especially for  small 
values of the  wave  number R [16]. 

In  the non-divergent  barotropic  atmosphere  treated  by 
Haurwitz,  the  pressure field (pip)  associated  with  the 
initial flow pat'tern (36) can  be  readily  determined  by 
integration of the  equations of motion (1)-(2),  using the 
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angular  phase  velocity I to  evaluate d+/bt.  We  replace 
p i p  by +. The  distribution of + obtained  in  this  way  is 
given in  the following  formulae: 

+=~,+a2A(e)+a2B(e) cos RX+a2C(e) cos 2RX, (38) 

A ( e ) = ~ w ( 2 3 + w ) ~ 2 + ~ K 2 ~ 2 R [ ( R + 1 ) ~ 2  

+ (2R'-   R-2) - ~ R ' c - ~ ] ,  

B(ej = 
(R+l)  ( R + 2 )  

2(3+w)K c"[(R2+2R+2)-(R+1)*e2], 

C(e)=%K2C2R[(R+l)C2-(R+2)], 

C=COS e. 

Both (36) and (38) satisfy  the  symmetry  conditions (31). I' 

+Q in (38) is an  arbitrary  constant which will determine 
the average  height of the free  surface  in  the  atmospheric 
model being  used  here. This in turn will determine  the "J- - - - 
speed of propagation of gravity-inertia  waves  and also the 
order of magnitude of the divergence in  the model (div 
V= - +"d+/d t )  . 

The  initial  distribution of + and + used for the  compu- F I G U R E  :<.-Initial distribution of the  height of the  free surface, 
tations  was that given by (36) and (38), with  the  following shown 011 a stereographic  projection.  Only  one  octant is shown, 
values for  the  constants: the  pattern  repeating  in  the  other  three  octants of the hemisphere. 

The  outer circle  is the  equator.  Isolines  are  labeled  in km. 
~ = K = 7 . 8 4 8 X l O - ~  see. - l  ( -O. lQ) ,  

R = 4  * 

+o=9.8 ( 8 X  lo3) m.2 set.-'. 

These values  for w and K give  rise to  large velocities, the 
maximum values of a i  cos e (=-a-*b+/de) and ab[= 
(a cos e)-'b+/bx] being about 99 and 65 m. sec.". Figure 
3 shows the  distribution of the  initial  height of t'he  free 
surface z=+/g. The  total  variation of 3.5  km.  in z is sev- 
eral times as  large  as  the  typical  variation in the  height 
of the  500-mb.  surface in  winter. 

It is clear  from the  way in which this  initial +-field was 
determined, that + and + together  satisfy the so-called 
"balance equation" [3] : 

V*E'VJ.+V-A=V'+, 

where 

Ax=ap3 sec eJ !@!!!@ =-v.V(ai cos e), ( x,e ) (39) 

(V is the  horizontal  gradient  operator on the sphere.) 
The  advantage of using +- and +-fields which  satisfy (39) 
is that  b(div v ) /b t  is initially zero.  According to  Charney 
[3], this will result  in  much  smaller  amplitudes of the 
gravity-inertia waves than would appear if only the 
geostrophic  relation  were  used to relat>e  the  initial +- and 
v-fields to one  another. 

It is of some interest to examine the  vorticity field 
corresponding  to (36) : 

f+(=2(w+~)sine-((1+R)(2+R)KcosResinecosRX 
-f[l.l-1.5 cos4 e COS 4x1. (40) 

(We  have  here  introduced  the  value R=4 and  the approxi- 
mate  values w = K - O . l Q ) .  Because of the  large value 
of K there  are  four regions of negative  absolute  vorticity 
in low latitudes.  These regions extend poleward to  a 
latitude of about 22' where  cos4 0=(1.1)/(1.5).  The 
minimum  value off+(  (reached a t  8-7.25") is  only about 
"0.093, however. 

6. COMPUTATIONAL STABILITY 

The  computational  stability of the finite-difference 
equations derived in  section 3, with  the  boundary condi- 
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tions discussed in  section 4, is difficult to  investigate be- 
cause the forecast equations  are  nonlinear with  variable F=):fAt, 
coefficients, and  the  boundary  conditions  are  not simple. 
Considerable  information  can  be obtained,  however,  by "=(A!) y'@ " sin -1 

examining the  computat'ional  stabilit'y of linearized  ver- 
2 

sions of the  forecast  equations. To  further simplify the 
analysis we make  the coefficients constant'  and consider 
only  solutions which are periodic in x and y, as  on  an (45) 
infinite plane. 

As an a n a h W  to (11)-(13) Or (14)-(16), we then  treat U,, V,, . . ., Hh are now the non-dimensional ampli- 
the following simple  systjem:  tudes of the  perturbations  and  are  functions of time 

_V= - 3 $ sin -. (3 " ; 

(n 'A t ) .  We also define the following matrices: 

(43) 

Here .f, u g ,   u g ,  and @ are  constants, while u, v, and + are 
perturbation  quantities. (43) could  also  include  a  term 
- (u&P/dx+vb@/dy) = --f(Ut+-vUg). I t  also is omit'ted 
for simplicity. For  disturbances of the  form exp i (pt 
+as+by), (41)-(43) are sat'isfied by tthree solutions for 
the  frequency p :  

z,= v, , Zh= v:, , [I] [:I 
The Elinssen-grid  finite-diffrrcnce  equivalents of (41)- 

(42) can then btl written  (nfttr some algebra)  in the 
following compact,  form: 

p1 corresponds t,o a geostrophic,  non-divergent wa.vr, 

We now write (41)-(43) in finit'e-differences,  using  t'he z , , , - 2 L z , + z n ~ , = o .  

An rquntion for Z (or 2') nlonc is rasi1.v obtained  from 
t,hrse : 

while p2 and p 3  are gravity-inert'ia  waves. 

(48) same basic  scheme that was used to  get (19)-(24) and 
(25)-(30). We introduce  solutions of the form qpq= 
exp i (ap+Pq),  where a = a A , P = b A ,  and p and (I are  the Here L is the  matrix I+gG2,  where I is t,he unit  matrix. 
finite-difference space coordinat,es. F~~ convenience  in L is Hermitian ( l i j  is t'he complex conjugate of Zji) and 
the analysis we introduce following new quantities:  thrreforc  has t,hrce  real  eigenvalues X j  and  three  orthog- 

onal  eigenvectors e j .  Further calculation  shows that the 
X's are  equal tjo cos .$, where .$ can  assume any one of the 

I" 
upqn=lJn\ three values 

I I ~ ~ ~ =  Vn\l r @ qpq e 1/22 (01+8) 7 sin ($&) = m', 
4pqn= H,$ q p q e ' / 2 i p ,  sin (+&J = 11'- [F2+M2+N2]1/2 ,  (49) 

~ b ~ ~ = l ~ h - J . q ~ ~ e ~ / ~ i ( a + ~ ) ,  sin (it3) = 14's [E'2+M2+AT2]1/2. 

Expanding Z,  now as a  series  in the ort)hogonal eigenvec- 
tors e j ,  

W=- u g  sin - cos -+?lo cos A t (  2 2 
f f P  

A 



we find that (48)  leads to the following  scalar  equations 
for  the 6,: 

6 j  ( 2  cos t j )  a,,+ a i  n”l=O, j = 1,2,3. (50) 

The  solutions  for a j ,  are  therefore 

where the  three  values of ti are  still  given  by  (49). Corn- 
putational  stability is achieved by demanding that all ti 
be real.  Referring  to  (49) we see that this  requires the 
following inequality  to be satisfied: 

It should be noted that a  weakening of this  to  permit  the 
equality will adlow cos e= - 1,  whereupon (50 )  will con- 
tain an  unstable  solution of the  form 6n=n,-1)n. 

Introducing  the definitions of W, F, A{, ant1 N from 
(45),  and  taking  the  worst  possible  oricntltltiorl  for uo 
and 210, the simplified computational  stability  criterion 
for this  Eliassen  grid  system  can  finally be written: 

In this  formula At and A are  the  time  and  space  incre- 
ments  over which the  partial  derivat,ives  with  respect t,o 
t and z (or y) are expressed as  finite differences. IvO/ is 
equal to ~ ’ u ~ + v ~ .  As is clear  from the  preceding 
analysis,  the  satisfact’ion of (53 )  will not’ necessarily  insure 
the  stability of a  c,omputation  where  the  lat,eral  boundary 
conditions  are more  complicated than t’he  simple  ones 
implied by  (45). In  such  cases ( 5 3 )  is best  thought of 
as a necessary, but  not sufficient’,  condition  for st,ability. 

Criterion (53 )  allows  a  maximum  time  st,ep of At= 
12.5 min.  to be used  in  forecasting  the flow pattern de- 
scribed  in  section 5 .  The  test  computat’ions were made 
with a time  step of (1/7) hr .kg.5 min. I t  took approxi- 
mat,ely 30 sec. on  an IBM 704 to  comput’e  one  time step; 
that is,  to solve the 12 equations (19)-(30) a t  all points 
concerned, and to  do the necessary boundary  computa- 
tions  listed  in  table 2. A 24-hr.  forecast  therefore  re- 
quired about 84 minutes of computer  time. (Checking 
of the  results  is  not  included in this figure.) Any  further 
increase in  camputer  speeds,  say  by  a  factor of 10, will 
certainly  make it possible to use the  prin~itive  equations 
over an entire  hemisphere  for  even  a  mult’i-level  baro- 
clinic  atmosphere. 

It is  clear  from  (51) and (49) that  the linearized  finite- 
difference  system  (47) possesses six frequencies. The 
continuous  system  (41)-(43),  on  the  other  hand, possesses 

only the three frequencies  given in  (44). It can  be  shown 
that  three of the six  frequencies in the finite-difference 
system  are similar  in form  to  the  three continuous  fre- 
quencies in  (44),  and  that  the remaining  three  finite- 
difference  frequencies  differ  only by  a reversal  in the sign 
of the  advection  term W. These  extra  solutions  are 
very  similar  to  the  “computational  wave” which is present 
in  the  conventional  way of solving the geostrophic 
vorticity  equation [14]. 

7. RESULTS OF THE  TEST  COMPUTATION 

A  48-hr.  forecast  was  made  from  the  initial wind and 
pressure  fields  given by (36) and (38). Since this  fore- 
cast  cannot  be  compared  with  either a real  atmospheric 
flow pattern  or  a  mathematically known  solution, the 
results will be  examined  only  from  the following view- 
points: 

a. Smoothness of the fields  in  space. In  particular, 
the  agreement between the stereographic  and  Mercator 
representations  in  the  areas of overlap (see fig. 1). 

b.  Smoothness of t’he  fields in t,ime-the  question of 
“meteorological  noise.” 

Figure  4 shows the  forecast field of z=+/g at  48 hours, 
in the  area covered by  the  stereographic A grid.  The 
waves have  moved about 18O to  the  east in  approximate 
agreement  with (37). Of special interest is the agreement 
between the Stereographic  isolines and  the  Mercator 
isolines (heavy  dashed  lines)  in the  area of overlap of 
the two  grids. In  general,  the two sets of lines  are both 
smooth.  They  agree  with  one  another extremely well 
except  for  one area  near  the  upper  right corner and 
another  smaller  area  near  the  lower  left  corner.  The 
maximum  value of the difference  between the two grids 
of z-values  in  these areas is about 90 meters-about  1/20 
of the  maximum difference  in z between  a  trough  and 
ridge at  the same  latitude.  The field of z on that portion 
of the  Mercator  grid  not  shown in figure  4 was very 
smooth,  even  in  the  low  latitude regions where f+{ 
was  negative. 

A severe  t’est of the  smoothness of the  forecast z-field is 
shown in part A of figure 5 .  Here  the  quantity -4xi i+ 
zi+l ,+ri +zi-r j + z i  j-l at t= 36 hr. is  plotted  for  an 
area  centered  near  the North Pole.  (Only the  stereo- 
graphic  grid covers this region.) There is some tendency 
for a “checkerboard”  pat,tern to  appcar, but) it is not 
very  pronounced. 

Smagorinsky [17] and  Hinkelmann [9] have  made ex- 
perimental  forecasts  with  the  primitive  equations which 
were not  based 011 the  Eliassen  type of finite-difference 
grid. In  their  scheme,  only  one  grid is used  (instead of 
the  four grids  described in section 3), and  the geopotential 
and  both  velocity  components  are  stored a t  all  points of 
this single  grid a t  all  t’ime steps.  Time  and space  deriva- 
tives are expressed as  centered  finite differences over the 
intervals 2 A t and 2 A, much  as is done in the usual 
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FJGURE 4.-The forecast field of z a t  48  hours, drawn on a stereo- 
graphic  map,  showing  only  the  area  covered by the  stereographic 
grid A .  Isolines are  drawn at intervals of 500 m. Thin  continuous 
isolines are  drawn  from  the  stereographic  grid-point.  values  (grid 
A ) .  Heavy  dashed isolines are  drawn from the  Mercator  grid- 
point  values  (grid A ) .  The  Mercator  grid A extended  only  in t o  
the circle. The  small  dotted  areas  show  the  spacing of the 
lattice  points on the  Mercator  and  stereographic  grids. 

4 14 6 12 5 - I  12 2 22   -4   22  -4 19 2 

5 0 II 5 5 15 IO I 9  -7 25 -14 22 -7 22 

4 . 2 8 2 21 -4 10 -4   22   -4   27  - 4  25 -4  

6 17 0 II I 17 -3 22 -14 27   -20  27 -14 22 

5 I 14 3 13 IO I3  - 4  25 - 4  2 7  -4  22 - 4  

5 9 5 IO 8 4 7 22 -7 22 -14 25 -7 I9 

6 3 I I  8 6 6 8 2 1 9 - 4 2 2 - 4 2 2  2 

A B 
FIGURE 5,“Crid point valrlcs of the quantity ( - 4 ~ i i + z i + ~  , 3- 

zi-1 j+ z: i t l+  zi i-1) at 36 hours for an  area  centered  near  the  pole; 
(A) from the forecast  made  with  the  Eliassen  grid  system, (B) 
from a special forecast  made  with  the finite-difference system used 
by  Smagorinsky  and  Hinkelmann.  Units  are  in  tens of meters. 

way of making  numerical  weather  predictions  with  the 
geostrophic  model [4]. In  order  to compare  this  method 
with  the  Eliassen  method of solving the primitive  equa- 
tions, a special 36-hr. forecast  was  made  with  the  appro- 
priate difference equations  from  the  same  initial flow 
pattern.  Figure 5 B shows the  resulting field of “ 4 z i j +  
zi+l  j + z i  j + l + z i - l  i + z i  j-l a t  36 hr.  from this special 
forecast. The aueragr! value of the  plotted  numbers is 
almost  the  same, 7.1 in  figure 5A and 8.2 in figure 5B, 
but  the  range in the  plotted  values is 25 in figure 5A and 
4 i  in figure 5R. The tendency  to  a  checkerboard  pattern 
is  very  marked in figure 5B. It is clear then  that fore- 
casts  made  this  way will be much  more  irregular  than 
t’hosc obtained  with  the  Eliassen  grid  system. 

The main  purpose of the  computation described  in this 
paper was  to test  the  computational  stability of the over- 
lapping stereographic-Rilercator grids,  since  this  feature 
of the  computation was not  amenable  to  the  type of com- 
putational  stability  analysis carried out in  section 6. 
Although the  results  shown in  figure 4 certainly  indicate 
that  the scheme is a t  least  reasonably  stable,  two small 
t,cnlporary “wiggles” did  appear  during  the course of the 
forecast. They did not  appear  until  after 24 hours, and 
as shown by figure 4, had practically  disappeared again 
by 48  hours. They  appeared  only  near  the  top  boundary 
of the  Mercator  grid,  the  stereographic  grid  point values 
being quite  smooth a t  all  times. Figure  6 shows the de- 
t-ailed st>ructure a t  36 hours of the wiggle located  near 
X=56’. The  other  irregularity was very  similar  and 
located  exactly  on  tho  other  side of the  hemisphere, in 
the  same  part of the  wavelike flow pattern. 

Both of the  irregularities  seemed  to be quasi-geostrophic 
in character,  with  the 0’ and V components following the 
geopotential field shown in figure 6. The  writer  has  not 
been able to isolate the cause of these  two  “errors,” 
which, although  small, disfigure what  otherwise  seem to 
be an excellent computation. Since they  appear  only on 
the  Mercator  grids,  and in  only  two of the  four  waves,  it 
is safe to conclude that  they do not represent  anything 
real, but represent rather some  peculiar  type of trunca- 
tion error. In this connection it  may be important to 
recall from  section  6 that  the Eliassen  grid system does 
vontain three false computational frequencies  in addition 
to the  three  physical frequencies.  Experience with  the 
geostrophic  vorticity  equation  has  shown that such  false 
frequencies  frequently become important  near  boundaries. 

In  order  to give an idea of the  amount of “meteoro- 
logical  noise”  present  in the  computations,  a record of the 
height a a t  2-hour intervals is shown  in  figure 7 for 3 
selected points.  (Unfortunately, a record of the  forecast 
fields was printed  out  only  every 2 hours=14  time  steps.) 
Point I is located  near  t’he  equator in one of the regions of 
negative f+{. Point I1 is located  initially  in  the  trough 
a t  46O N. near  the  top of the  Mercator grid. (It is one of 
the  points in figure, 6, where it is marked 11.) Point I11 
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is located  175  km.  from  the  North Pole. All three  points 
have  been  purposely  chosen  in  regions of small  net changes 
in z (except  for the  last half of curve TI), so that  any small 
short-period  oscillations will stand  out clearly.  Such 
oscillations are  indeed  present  and  evidently  have  an 
amplitude  corresponding  to  a  height  change of f 5 0  
meters. For comparison, the maximum  net 48-hr.  change 
in z at   any point was equal  to f 1450 meters- --a value 29 
times as large  as  the  amplitude of t,he  meteorological noise. 
Height  tendencies  measured  over  intervals of less than 
about 4 hours would therefore  represent  primarily  “noise,” 
and not  the slower quasi-geostrophic  changes. 

This result.--the presence of a small but noticeable 
inertia-gravity  oscillation- -is a t  first  sight  contrary  to  the 
results obtained  from  “balanced”  initial  data  by  Charney 
in [3]. Sn Charney’s  t’est  computation  with  the  primitive 
equations, no meteorological noise appeared a t  all when 
the initial  wind  and  pressure fields satisfied the balance 
equation  (39). The explanation  for  this difference is that 
Charney’s  initial flow pattern was  a stat’ionary  wave, while 
the  flow pattern used  here is not  stationary  but moves 
slowly to  the  east.  In a barotropic  at’mosphere  a  quasi- 
geostrophic wave  has, as is well known,  a  small, but sig- 
nificant divergence field associated  with  it if the  wave is 
not stationary.  This divergence  associated with  the 
geostrophic wave  disappears  only if the wavelengt’h  hap- 
pens to  be  such  that  the  wave is stationary.  Therefore, 
unless the  initial  wind field also has  this  small  amount of’ 
divergence, the forecast must contain  some  high-frequency 
gravity-inertia  oscillations  (“noise”)  in addition  to  the 
low-frequency geostrophic  motions. 

From  the linearized treatment of the noise problem by 
Hinkelmann in [8],  it is  possible to  estimate t’he magnitude 
of the noise which  is introduced  by neglecting in the  initial 
data the (small)  divergence  associated with a moving 
geostrophic wave. Sf c1 and c2 are  the  phase velocities of 
the geostrophic  and  gravity-inertia waves  respectively, the 
fictitious gravity-inertia  wave will have  an  amplitude  in 
the geopotential 4 approximately  equal  to (c1/c2) times the 
amplitude  in 4 of the quasi-geostrophic  wave. For  the 
example treated  in  this  paper, (cl/c2) is about 1/30,  giving 
good agreement  with  the  numerically  computed  ampli- 
tudes in + of the two  types of motion.  There  can be no 
doubt then  that  the numerically  computed noise shown  in 
figure 7 is  due  to  the choice of initial  data  and is not caused 
by the  numerical  technique.  The  importance of including 
this geostrophically-conditioned  divergence  in the  initial 
data for the primitive  equations has also been  demon- 
strated recently  by  Hinkelmann [9]. 

According to  the t’heory of the  geostrophic  approxima- 
tion as developed by  Monin [12] (cont’ained to some  ext,ent 
also in  [5]), the second  geostrophic  approximation  to  the 
true wind  is  given by v2, say, where the divergence of v2 is 
precisely that divergence  which appears (multiplied byf) 
in the  usual  geostrophic  form of the  vorticity  equation, 

FIGURE 6.-Detailed  st,ructure of one of the  two  temporary irregu- 
larities  which  appeared on the  Mercator  grid.  The  isolines of z 
(for t = 3 6  hours) are  drawn on a Mercator  projection,  the  small 
crosses  being the-points of Mercator  grid A .  The  top of the figure 
is a t  q= Q +  I. The  heavy  dashed isolines  represent  the  Mercator 
analysis  and  the  thin  continuous  lines  an  independent analysis of 
the  corresponding  stereographic  grid.  Both  sets of isolines  are 
drawn  at  intervals of 100 meters,  the  minimum value  isolines  in 
the  upper  right  portion of the  area  being  in  both  cases  that for 
8300 m.  The  grid  point  marked I1 is the  point corresponding to  
curve I1 in figure 7 .  

and  the  vorticity of v2 is  given by  an  equation similar to 
the  balance  equation (39), but  with  the non-linear  terms  in 
+ evaluated  geostrophically.  Evidently  Charney [3] and 
Hinkelmann [9] have  each  tested  separately  the value of 
adding  to  the  geostrophic wind a correction  either  for  the 
vorticity or for the divergence. The elimination of noise 
in both of their  results is due  to  the special choice of initial 
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data used by each of them;  in  Charney’s special test case 
the correction  for  divergence  was  unnecessary, as men- 
tioned above,  because the wave  was  stationary, while in 
Hinkelmann’s  special  case the linear  terms  in (39) were 
not  only rnwh larger  than  the neglected  non-linear  terms, 
but  the correction  for  divergence  was  quite important be- 
cause of the  very  strong  baroclinicity in the zonal flow. 
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